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Abstract

Long-chain perfluoroalkyl substances (PFASs) are being replaced by short-chain PFASs and
fluorinated alternatives. For ten traditionally studied PFASs and seven recently discovered
perfluoroalkyl ether carboxylic acids (PFECAs), we report (1) occurrence in the Cape Fear River
(CFR) watershed, (2) fate in drinking water treatment processes, and (3) adsorbability on
powdered activated carbon (PAC). In the headwater region of the CFR basin, PFECAs were not
detected in the raw water of a drinking water treatment plant (DWTP), but concentrations of
traditionally studied PFASs were high. The US Environmental Protection Agency’s lifetime
health advisory level (70 ng/L) for perfluorooctane sulfonic acid and perfluorooctanoic acid
(PFOA) was exceeded on 57 of 127 sampling days. In raw water of a DWTP downstream of a
PFAS manufacturer, the mean concentration of perfluoro-2-propoxypropanoic acid
(PFPrOPrA), a replacement for PFOA, was 631 ng/L (n=37). Six other PFECAs were detected
with three exhibiting chromatographic peak areas up to 15 times that of PEPrOPrA. At this
DWTP, PFECA removal by coagulation, ozonation, biofiltration, and disinfection was
negligible. PFAS adsorbability on PAC increased with increasing chain length. Replacing one
CF: group with an ether oxygen decreased PFAS affinity for PAC, while replacement of

additional CF2 groups with ether oxygens did not lead to further affinity changes.
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Introduction

Perfluoroalkyl substances (PFASs) are extensively used in the production of plastics, water/stain
repellents, firefighting foams and food-contact paper coatings. The widespread occurrence of
PFASs in drinking water sources is closely related to the presence of industrial sites, military
fire training areas, civilian airports, and wastewater treatment plants.! Until 2000, long-chain
PFASs, such as perfluorocarboxylic acids (PFCAs) with 7 or more carbon atoms and
perfluorosulfonic acids (PFSAs) with 6 or more carbon atoms, were predominantly used.?
Accumulating evidence about ecotoxicological and human health effects? ¢ associated with
exposure to long-chain PFASs has led to increased regulatory attention. Recently the U.S.
Environmental Protection Agency (USEPA) established a lifetime health advisory level (HAL)
of 70 ng/L for the sum of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid
(PFOS) concentrations in drinking water.>¢ Over the last decade, production of long-chain
PFASs has declined in Europe and North America, and manufactures are moving towards
short-chain PFASs and fluorinated alternatives.” Some fluorinated alternatives were recently
identified,* " but the majority of the organofluorine loading to the aquatic environment remains

unidentified.!214

One group of fluorinated alternatives, perfluoroalkyl ether carboxylic acids (PFECAs), was
recently discovered in the Cape Fear River (CFR) downstream of a PFAS manufacturing
facility." Identified PFECAs included perfluoro-2-methoxyacetic acid (PEMOAA), perfluoro-3-
methoxypropanoic acid (PFMOPrA), perfluoro-4-methoxybutanoic acid (PFMOBA), perfluoro-
2-propoxypropanoic acid (PFPrOPrA), perfluoro(3,5-dioxahexanoic) acid (PFO2HxA),
perfluoro(3,5,7-trioxaoctanoic) acid (PFO30A) and perfluoro(3,5,7,9-tetraoxadecanoic) acid
(PFO4DA) (Table S1 and Figure S1 in supporting information (SI)). The ammonium salt of
PFPrOPrA is a known PFOA alternative that has been produced since 2010 with the trade name
“GenX"."* According to the manufacturer, the ether oxygen enables “very rapid
bioelimination”’>; however, except for the PFPrOPrA data reported by the manufacturer, 1

little information is available on pharmacokinetic behavior, toxicity, or environmental fate and
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transport of PFECAs. To the knowledge of the authors, the only other published PFECA
occurrence data are for PEPrOPrA in Europe and China,' and no published data are available

on the fate of PFECAs during water treatment.

The strong C-F bond makes PFASs refractory to abiotic and biotic degradation,* and most
water treatment processes are ineffective for legacy PFAS removal.?! Processes capable of
removing PFCAs and PFSAs include nanofiltration,?” reverse osmosis*, ion exchange,* ** and
activated carbon adsorption,? % with activated carbon adsorption being the most widely

employed treatment option.

The objectives of this research were to (1) identify and quantify the presence of legacy PFASs
and emerging PFECAs in drinking water sources, (2) assess PFAS removal by conventional and
advanced processes in a full-scale drinking water treatment plant (DWTP), and (3) evaluate

PFAS adsorbability by powdered activated carbon (PAC).

Materials and Methods

Water samples: Source water of three DWTPs treating surface water in the CFR watershed was
sampled between June 14 and December 2, 2013 (Figure S2 in SI). Samples were collected from
the raw water tap at each DWTP daily as either 8-hour composite (DWTP A, 127 samples) or 24-
hour composite (DWTP B, 73 samples; DWTP C, 34 samples). Samples were collected in 250-mL
HDPE bottles and picked up (DWTPs A and B) or shipped overnight (DWTP C) on a weekly
basis. All samples were stored at room temperature until analysis (within 1 week of receiving).
On August 18, 2014, grab samples were collected at DWTP C after each unit process in the
treatment train (raw water ozonation, coagulation/flocculation/sedimentation, settled water
ozonation, biological activated carbon (BAC) filtration, disinfection by medium pressure UV
lamps and free chlorine). Operational conditions of DWTP C on the sampling day are listed in
Table S2 in SI. Samples were collected in 1-L HDPE bottles and stored at room temperature

until analysis. On the same day, grab samples of CFR water were collected in six 20-L HDPE
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carboys at William O. Huske Lock and Dam downstream of a PFAS manufacturing site and

stored at 4°C until use in PAC adsorption experiments.

Adsorption experiments: PFAS adsorption by PAC was studied in batch reactors (amber glass
bottles, 0.45 L CFR water). PFECA adsorption was studied at ambient concentrations (~1,000
ng/L PFPrOPrA, chromatographic peak areas of other PEECAs ~10-800% of the PEPrOPrA
area). Legacy PFASs were present at low concentrations (<40 ng/L) and spiked into CFR water
at ~1000 ng/L each. Background water matrix characteristics are summarized in Table S3 in SI.
A thermally-activated, wood-based PAC (PicaHydro MP23, PICA USA, Columbus OH, mean
diameter: 12 um, BET surface area: 1460 m?/g)® proved effective for PFAS removal in a prior
study? was used at doses of 30, 60 and 100 mg/L. These doses represent the upper feasible end
for drinking water treatment. Samples were taken prior to and periodically after PAC addition

for PFAS analysis.

PFAS analysis: Information about analytical standards and the liquid chromatography-tandem

mass spectrometry (LC-MS/MS) method for PFAS quantification is provided in SI.
Results and Discussion

PFAS occurrence in drinking water sources: Mean PFAS concentrations in source water of
three DWTPs treating surface water from the CFR watershed are shown in Figure 1. In
communities A and B, only legacy PFASs were detected (mean YPFAS: 355 ng/L in community
A, 62 ng/L in community B). Detailed concentration data are shown in Table S6 and Figure S3 in
SI In community A, PFCAs with 4-8 carbons, perfluorohexane sulfonic acid (PFHxS) and PFOS
were detected at median concentrations > QLs. Mean and median concentrations were 44 and 29
ng/L, respectively, for PFOS, and 46 and 34 ng/L, respectively, for PFOA. During the 127-day
sampling campaign, the sum concentration of PFOA and PFOS exceeded the USEPA HAL of 70
ng/L on 57 days, and the mean over the entire study period was 90 ng/L. Similar legacy PFAS
concentrations were observed in the same area ten years ago,* suggesting that PFAS source(s)

upstream of community A have long-term negative impacts on drinking water quality. Also,
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our data show that legacy PFASs remain surface water contaminants of concern even though
their production has been phased out in the US. Relating total PFAS concentration to average
daily stream flow (Figure 54 in SI) illustrated a general trend of low PFAS concentrations at
high flow and high concentrations at low flow, consistent with the hypothesis of upstream point
source(s). In community B, perfluorobutanoic acid (PFBA) and perfluoropentanoic acid (PFPeA)
were the most frequently detected, with mean concentrations of 12 and 19 ng/L, respectively.
Mean and median PFOA and PFOS concentrations were <QL, and the maximum sum
concentration of PFOA and PFOS was 59 ng/L. Lower PFAS concentrations in community B
relative to community A can be explained by the absence of substantive PFAS sources between
the two communities, dilution by tributaries, and the buffering effect of Jordan Lake, a large

reservoir located between communities A and B.

PFBA H PFPeA m PFHxA m PFHpA E PFOA PFNA
PFDA m PFBS m PFHXS m PFOS m PFPrOPrA

Community A
n=127

Community B
n=73 s

Community C
n=34 L L s

0 200 400 600 800
Average concentration in drinking water source (ng/L)

Figure 1. PFAS occurrence at drinking water intakes in the CFR watershed. Concentrations
represent averages of samples collected between June and December 2013. Individual samples
with concentrations < QLs were considered as 0 when calculating averages, and average

concentrations < QLs were not plotted.
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In community C (downstream of a PFAS manu facturing site), legacy PFAS concentrations were
low, and only mean (and median) concentrations of PFBA and PFPeA were >QLs. However,
high concentrations of PFPrOPrA were detected (up to ~4500 ng/L). The average PFPrOPrA
concentration (631 ng/L) was approximately eight times the average summed PFCA and PFSA
concentrations (79 ng/L). Other PFECAs had not yet been identified at the time of analysis.
Similar to communities A and B, the highest PFAS concentrations for community C were also

observed at low flow (Figure S3 in SI).

PFAS fate in conventional and advanced water treatment processes: To investigate whether
PFASs can be removed from impacted source water, samples from DWTP C were collected at
the intake and after each treatment step. Results in Figure 2 suggest conventional and advanced
treatment processes (coagulation/flocculation/sedimentation, raw and settled water ozonation,
BAC filtration, disinfection by medium pressure UV lamps and free chlorine) did not remove
legacy PFASs, consistent with previous studies.?’> The data further illustrate that no
measurable PFECA removal occurred in this DWTP. Concentrations of some PFCAs, PFSAs,
PFEMOPrA, PFPrOPrA and PEMOAA may have increased after ozonation, possibly due to the
oxidation of precursor compounds.? Disinfection with medium pressure UV lamps and free
chlorine (located the between BAC effluent and the finished water) may have decreased

concentrations of PFEMOAA, PFMOPrA, PFMOBA and PFPrOPrA, but only to a limited extent.

Results in Figure 2 further illustrate that the PFAS signature of the August 2014 samples was
similar to the mean PFAS signature observed during the 2013 sampling campaigns shown in
Figure 1; i.e.,, PFPrOPrA concentrations (400-500 pg/L) greatly exceeded legacy PFAS
concentrations. Moreover, three PFECAs (PFMOAA, PFO2HxA and PFO30A)" had peak areas
2-113 times greater than that of PFPrOPrA (Figure 2b). The existence of high levels of emerging

PFASs suggests the necessity of incorporating them into routine monitoring.
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172 Figure 2. Fate of (a) legacy PFASs and PFPrOPrA and (b) PFECAs through a full-scale water
173 treatment plant. Because authentic standards were not available for emerging PFECAs,

174  chromatographic peak area counts are shown in panel b. PFPrOPrA data are shown in both

175  panels and highlighted in dashed ovals for reference. Compounds with concentrations <QL

176  were not plotted.
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PFAS adsorption by PAC: PAC can effectively remove long-chain PFCAs and PFSAs, but its
effectiveness decreases with decreasing PFAS chain length.» 2428 [t is unclear, however, how the
presence of ether group(s) in PFECAs impacts adsorbability. After a contact time of 1 hour, a
PAC dose of 100 mg/L achieved >80% removal of legacy PFCAs with carbon chain length >7. At
a PAC dose of 60 mg/L, >80% removal wés achieved for PFCAs with carbon chain length >8
over the same time. At a PAC dose of 100 mg/L, removals were 95% for PFO4DA and 54% for
PFO30A, but <40% for other PFECAs. Detailed removal percentage data as a function of PAC
contact time are shown in Figure S5 in SI. PEMOAA could not be quantified by the analytical
method used in this test; however, based on the observations that PFAS adsorption decreases
with decreasing carbon chain length and that PFECAs with one or two more carbon atoms than
PFMOAA (i.e,, PFMOPrA and PFMOBA) were poorly adsorbed by PAC (Figure 3), it is

expected that PFMOAA adsorption is negligible at the tested conditions.

To compare the affinity of different PFASs for PAC, the PFAS removal percentages in solution
were plotted as a function of PFAS chain length (the sum of carbon (including branched), ether
oxygen, and sulfur atoms) (Figure 3(b)). The adsorbability of both legacy and emerging PFASs
increased with increasing chain length. PFSAs were more readily removed than PFCAs of
matching chain length, which agrees with previous studies.? 28 PFECAs exhibited lower
adsorbabilities than PFCAs of the same chain length (e.g. PFEMOBA<PFHxA), suggesting that
the replacement of a CF: group with an ether oxygen atom decreases the affinity of PFASs for
PAC. However, the replacement of additional CF groups with ether groups resulted in small or
negligible affinity changes among the studied PFECAs (e.g., PFMOBA~PFO2HxA).
Alternatively, if only the number of perfluorinated carbons were considered as a basis of
comparing adsorbability, the interpretation would be different. In that case, with the same
number of perfluorinated carbons, PFCAs have a higher affinity for PAC than mono-ether
PFECAs (e.g., PEPeA>PFMOBA), but a lower affinity than multi-ether PFECAs (e.g.,
PFPeA<PFO30A).
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Figure 3. PFAS adsorption on PAC (a) at carbon doses of 30, 60 and 100 mg/L and (b) as a
function of PFAS chain length. PAC contact time in CFR water was 1 hour. Legacy PFASs were
spiked at ~1000 ng/L and the emerging PFASs were at ambient concentrations. Figures show
average PFAS removal percentages, and error bars show one standard deviation of replicate

experiments.

In either framework, it is clear that the presence of ether groups in PFECAs changes their
propensity to leave the aqueous phase and adsorb on PAC. It can thus be inferred that the

incorporation of ether groups changes physiochemical properties, such as the octanol-water
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partition coefficient and aqueous solubility of PFECAs relative to PECAs. Consequently, it is
reasonable to expect that fate and transport of PFECAs in natural and engineered systems will
differ from that of legacy PFCAs. For example, while PFPrOPrA (“GenX") may be less
bioaccumulative than PFOA, which it is replacing, the adsorption data here suggest PFPrOPrA
is less hydrophobic than PFOA. Thus, when released to the environment, PEPrOPrA has a
higher tendency to remain in the aqueous phase and is more difficult to remove from drinking

water sources by adsorptive means.

To the knowledge of the authors, this is the first paper reporting the behavior of recently
identified PFECAs in water treatment processes. We further show that legacy PFASs continue to
be a concern in the upper reaches of the CFR basin, and that PFECAs are an important class of
fluorinated alternatives that dominated the PFAS signature downstream of a fluorochemical
manufacturer. The relatively low concentrations of legacy PFASs in the finished drinking water
of community C are consistent with data reported from this DWTP in the third unregulated
contaminant monitoring rule (UCMR3) conducted by USEPA?. However, the detection of
potentially high levels of PFECAs, and the difficulty to effectively remove not only legacy
PFASs but also PFECAs with many water treatment processes, suggest the need for broader

discharge control and contaminant monitoring.
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Analytical standards: PFASs studied in this research are listed in Table S1. For legacy PFASs,
native and isotopically labeled standards were purchased from Wellington Laboratories
(Guelph, Ontario, Canada). Native PFPrOPrA was purchased from Thermo Fisher Scientific

(Waltham, MA). No analytical standards were available for other PFECAs.

PFAS quantification: PFAS concentrations in samples from DWTPs and adsorption tests were
determined by liquid chromatography tandem mass spectrometry (LC-MS/MS) using a large-
volume (0.9 mL) direct injection method. An Agilent 1100 Series LC pump and PE Sciex API
3000 LC-MS/MS system equipped with a 4.6 mm x 50 mm HPLC column (Kinetex C18 Spm
100A, Phenomenex Inc.) was used for PFAS analysis. The eluent gradient is shown in Table 54
in SI. All samples, calibration standards, and quality control samples were spiked with
isotopically labeled internal standards, filtered through 0.45-um glass microfiber syringe filters,
and analyzed in duplicate. The MS transitions for PFAS analytes and internal standards are
shown in Table S5 in SI. The quantitation limit (QL) was 25 ng/L for PFOS and
perfluorodecanoic acid, and 10 ng/L for other legacy PFASs and PFPrOPrA. For PFECAs

without analytical standards, chromatographic peak areas are reported.

PFAS concentrations along the treatment train of DWTP C were analyzed using a Waters
Acquity ultra performance liquid chromatograph interfaced with a Waters Quattro Premier XE
triple quadrupole mass spectrometer (Waters, Milford, MA, USA) after solid phase extraction.
Method details are described elsewhere.! The QL for all PFASs with analytical standards was

0.2 ng/L, and peak areas were recorded for PFECAs without standards.



Table S1. Perfluoroalkyl substances (PFASs) detected in the Cape Fear River (CFR) watershed

Molecular # of Chain length

Compound Formula perfluorinated (including all

ight
weigh carbons C,0Oand S)

Perfluorocarboxylic acids (PFCAs)

Perfluorobutanoic acid (PFBA) 214.0 CisHF:On 375-22-4 3 4
Perfluoropentanoic acid (PFPeA) | 264.0 | Cai-iFaOz | 2706-90-3 4 5
Perfluorohexanoic acid (PFHxA) | 314.1 | CsHF1uO: | 307-24-4 5 6
Perfluoroheptanoic acid (PFHpA) 3641 | GHFO: 375859 6 7
Perfluorooctanoic acid (PFOA) | 4141 | CsHF1:02 | 335-67-1 7 8
Perfluorononanoic acid (PFNA) | 464.1 | CoHF 1702 | 375-95-1 | 8 9
Perfluorodecanoic acid (PFDA) | 514.1 CioHF 1902 335-76-2 9 10
Perfluorosulfonic acids (PESAs)
Perfluorobutane sulfonic acid (PFBS) - 300.1 | (54HFUSOJ 29420-49-3 4 5
Perfluorohexane sulfonic acid (PFHxS) 4382 | CHFiSO:  355-46-4 6 | 7
Perfluorooctane sulfonic acid (PFOS) | 500.1 - GsHF7SOs ~ 111873-33-7 | 8 9
Perfluoroalkyl ether carboxylic acids with one ether group (mono-ether PFECAs)
Perfluoro-2-methoxyacetic acid (PEMOAA) 180.0 | GHFs0s | 674-13-5 | 2 4
Perfluoro-3-methoxypropanoic acid (PEMOPrA) 2300 | GHFOs 377731 | 3 5
Perfluoro-4-methoxybutanoic acid (PFMOBA) | 280.0 | CsHF«Os 863090-89-5 | 4 6
Perfluoro-2-propoxypropanoic acid (PFPrOPrA ) 330.1 CsHFuOs 13252-13-6 5 7
Perfluoroalkyl ether carboxylic acids with multiple ether group (multi-ether PFECAs)
Perfluoro(3,5-dioxahexanoic) acid (PFO2HxA) 246.0 CiHF-0O4 39492-88-1 3 6
Perfluoro(3,5,7-trioxaoctanoic) acid (PFO30A) | 3120 | CsHF+0Os 39492-89-2 | 4 | 8
Perfluoro(3,5,7,9-tetraoxadecanoic) acid (PFO4DA) | 378.1 | CeHF110¢ | 39492-90-5 | 5 | 10



Table S2. Operational conditions of DWTP C on sampling day (August 18, 2014)

Raw water ozone dose 3.1 mg/L
Raw water total organic carbon concentration 6.0 mg/L
Aluminum sulfate coagulant dose 43 mg/L
Coagulation pH 5.70
Settled water ozone dose 1.3 mg/L
Settled water total organic carbon concentration 1.90 mg/L

L 9.4 minutes for granular activated
Empty bed contact time in

: ; carbon layer
biological activated carbon filters L

2.3 minutes for sand layer

Medium pressure UV dose 25 mJ/cm?
Free chlorine dose 1.26 mg/L as Cl:
Free chlorine contact time 17.2 hours

Table S3. Water quality characteristics of surface water used in adsorption tests

Non-purgeable Ultraviolet absorbance ) Alkalinity Conductivity

organic carbon (mg/L) at a wavelength of 254 nm (mg/L as CaCOs) (uS/cm)

Table S4. LC gradient method for PFAS analysis

Time (min) Mobile Phase A% (v/v) Mobile Phase B% Flow Rate (mL/min)
0-2 | 95 5 | _ 0.9
2-5 _ 95 | 5 | 09
5-10 95 — 10 5—90 _ 0.9
10 - 10.1 _ 10 | 90 | 09
10.1 - 14 10 — 95 90 — 5 0.9

Mobile phase A: 2 mM ammonium acetate in ultrapure water with 5% rﬁethano]

Mobile phase B: 2 mM ammonium acetate in acetonitrile with 5% ultrapure water



Table S5. MS transitions for PFAS Analysis

Legacy PFASs

PFECAs

Internal standards

Compound

PFBA
PFPeA
PFHxA
PFHpA

PFOA
PFNA
PFDA
PFBS
PFHxS
PFOS

PFMOAA

PFMOPrA

PFMOBA

PFPrOPrA

PFO2EIXA
PFO30A
PFO4DA

MS/MS
Transition

212.8 — 168.8
| 2629 2188 |
| 313.6 — 268.8 |
| 3629 — 3188 |

413.0 — 368.8

463.0 — 418.8

513.1 — 68.8

299.1 — 98.8

399.1 — 98.8

| 4989 9838
| 180.0 — 850 |
22911849
| 279.0 2348 |

329.0 — 284.7

245.1 — 85.0

311. — 849

377.1 — 85.0
Perfluoro-n-[1,2,3,4-3Cs]butanoic acid
(13C4-PFBA)
Perfluoro-n-[1,2-13C:]hexanoic acid
(13C2-PFHxA)
Perfluoro-n-[1,2,3,4-1*Cz2]octanoic acid
(13C4-PFOA)
Perfluoro-n-[1,2-3Cz]decanoic acid
~ (13C2-PFDA)
Sodium perfluoro-1-
hexane['"O:]sulfonate (1802-PFHxS)
Sodium perfluoro-1-[1,2,3,4-3Cs]octane
sulfonate (13C4-PFOS)

217.0 - 172

315.1 — 269.8

417.0 — 372.0

515.1 — 469.8

403.1 — 83.8

5029 — 79.9

Internal
standard

13C4-PFBA
13C2- PFHxA
13C2- PFHxA
13C4- PFOA
13C4- PFOA
13C4- PFOA
13C2-PFDA
1802-PFHXS
1802-PFHXS
13C4-PFOS
N/A
N/A
N/A
13C2- PFHxA
N/A
N/A
N/A

Not applicable



Table S6. Maximum, minimum, mean and median concentrations (ng/L) of PFASs in CFR watershed surface water as drinking water

sources. *
Community A Community B Community C
min median mean max  min median mean X min median mean

PFBA 99 <10 26 33 38 <10 12 12 104 <10 12 22
PFPeA 191 14 44 62 38 <10 19 19 116 <10 30 36
PFHxA 318 <10 48 78 42 <10 <10 11 24 <10 <10 <10
PFHpA 324 <10 39 67 85 <10 <10 11 24 <10 <10 <10
PFOA 137 <10 34 46 32 <10 <10 <10 17 <10 <10 <10
PFNA 38 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10
PFDA 35 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25
PFBS 80 <10 <10 <10 11 <10 <10 <10 <10 <10 <10 <10
PFHxS 193 <10 10 14 14 <10 <10 <10 14 <10 <10 <10
PFOS 346 <25 29 44 43 <25 <25 <25 40 <25 <25 <25
PFPrOPrA <10 <10 <10 <10 10 <10 <10 <10 4560 55 304 631
PFOA+PFOS 447 0 64 90 59 0 0 9 55 <10 <10 <10
Y PFASs** 1502 18 212 355 189 0 47 62 4696 55 345 710

* Concentrations < quantification limits were considered as zero to calculate means and } PFASs.

*# Other PFECAs were present in water samples from community C but could not be quantified and were therefore not included in 3
PFASs



Figure S1. Molecular structures of PEFCAs in this study
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Figure S2. Sampling sites in the Cape Fear River watershed, North Carolina
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Figure S3. PFAS concentration distributions in the CFR watershed at three drinking water
intakes. Concentrations < quantification limits were considered as zero. The upper and lower
edges of a box represent the 75 and 25% percentile, respectively; the middle line represents the
median; the upper and lower bars represent the 90" and 10* percentile, respectively; the dots
represent outliners (>90t or <10* percentile).
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Figure 54. Total PFAS concentrations in the source water and stream flow at the three studied
DWTPs. Stream flow data were acquired from US Geological Survey stream gage records
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Figure S5. PFAS adsorption on PAC at carbon does of (a, b) 30 mg/L, (c, d) 60 mg/L and (e, f) 100
mg/L. Figures show average PFAS removal percentages of duplicate tests.
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